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Abstract: The most common way to prevent mistakes in 

memory is to use error correcting codes. For a long time, 

OLS codes have relied on linear block codes with single-

error correction and double-error detection. Orthogonal 

Latin square (OLS) codes are one kind of one-step-

majority-logic-decodable (OS-MLD) error correcting 

codes. The decoding process is quick and simple with these 

codes. In order to fix the radiation-induced soft errors in 

semiconductor memory, OLS codes are used to fix failures 

in multiple cells.Latin squares are used to extract OLS 

codes, which can be effectively implemented on 

reconfigurable architectures like FPGAs. In this research, 

we define the parity regulation matrices and suggest a way 

to reduce the decoding block by enlarging the real OLS 

code using Latin Square codes. This article details the steps 

to reduce the decoding block by increasing the real size of 

an orthogonal Latin square code (OLS) and how to build 

these codes using their parity control matrices. In order to 

address the generalisation, this research narrows the scope 

of the suggested method to codes that have better error 

correcting capabilities. 

I.INTRODUCTION 

 

Several processes, including manufacturing flaws, ageing, 

and soft mistakes generated by radiation, may cause 

electronic circuits on the nanoscale to fail. As an example, 

a memory might fail due to data corruption caused by a soft 

mistake that changes the meaning of a word. Due to the 

importance of memory security in mission-critical 

applications, error correcting codes (ECCs) are often used. 

To identify and correct errors, these codes augment each 

word with a certain amount of parity bits. In both the write 

and read operations from memory, the parity checks are 

calculated. The encoding and decoding processes need extra 

logic hardware. The amount of bit mistakes that the code 

can fix is affected by the intricacy of the encoding and 

decoding logic circuits and the number of additional parity 

check bits per word. There are cases when the mistake rates 

are large and impact memory cells at random. For instance, 

in Spin-transfer or near-threshold caches.  

 

For support of multiple bit error correction, STT-MRAMs 

(Torque Magneto-resistive Random Access Memory) are 

necessary.There is a correlation between the amount of bits 

of parity and the number of fixable defects for some widely 

used codes, such as the Bose ChaudhuriHocquenghem 

(BCH) codes. However, BCH codes' decoding complexity 

increases when bit-per-word corrections of more than one 
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bit are required. 

 

rises rapidly; this is true for the vast majority of error 

correction codes; and it presents a challenge to the 

maintenance of modest memory, despite the fact that 

decoding may become a limiting design feature.  

 

In order to safeguard memories, researchers have spent the 

last hundred years studying various codes that can fix a few 

bits for every word of fast concurrent decoding. These 

codes include codes for Orthogonal Latin Square, 

Difference Set, and even Euclidean Geometry. Fast 

decoding is accomplished in all of these scenarios utilising 

Another Step Majority Logic Decoding. OS-MLD decodes 

each bit by enduring a few of equations that check for 

parity.When compared to syndrome decoding, which 

requires a huge number of syndrome patterns to be 

evaluated when correcting several bits at once and 

compares each bit to the appropriate error patterns, the 

whole system is much simpler. The most serious issue with 

OS-MLD code is that it is only compatible with a small 

subset of codes, each of which has limited word sizes and 

error correcting capabilities.  

 

For two-bit error correction codes (i.e., Double Error 

Correction, or DEC) and word sizes larger than ten bits, for 

example, the only practical design choices are those 

supplied by OLS codes.  

Such codes provide a large memory overhead due to the 

large number of parity check bits they include.  

 

There is undoubtedly a strong potential, and thus in 

uncovering new code installs that stimulate OS-MLD as 

effective and creative design possibilities. With the use of 

OS-MLD, this work introduces a novel approach to 

building Double Error Correction codes. This novel 

framework relies on parity control matrices with constant-

weight columns that overlap no more than once or 

twice.That makes it possible to create an enhanced OS-

MLD, which is much more intricate than Orthogonal Latin.  

Square codes, although they still outperform non-OS-MLD 

codes like BCH codes in terms of decoding performance.  

 

Memory security also makes use of OLS codes, which were 

established in prior generations as part of the plan to 

safeguard interconnect and cache. In Orthogonal Latin 

Square codes, each block consists of k bits for data and tm 

bits for parity. This is where an integer m and a number t 

represent the number of mistakes fixed. Both m and word 

dimensions are often powers of two when dealing with 

memories. One major benefit of OLS coding is how cheap 

and easy it is to decode them.This is why OS-MLD was able 

to decode OLS codes.As an example, consider OLS codes 

and difference set codes (DS codes).Orthogonal Latin 

Square codes have historically evolved to include the 

following features: 1) all data bits are connected to exactly 

2t parity control bits; 2) all other data bits are connected to 

no more than like those parity control bits.  

 

The proposed SEC-DED-DAEC codes are derived from 

DEC-OLS codes, which stand for Double Error Correction 

Orthogonal Latin Square codes. To begin, using the parity 

check matrix as a starting point, remove the m parity check 

bits that correspond to one of the Mi matrices. Each 

equation for the deleted parity review will use 

communication data bits within the reduced matrix that do 

not constitute a parity check. In addition, Figure 1 labels 

these m-bit groups as g1, g2, g3, and g4. And so, removing 

M1 does not result in an exchange of parity check bits. In 

the same way, bits 5-8 (g2), 9-12 (g3), and 13-16 (g4) all 

belong to different pairs. The updated matrix includes three 

parity tests that cover all data bits.Therefore, both single-bit 

and double-bit faults may be fixed with the development of 

a majority vote to decode the bits.  
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𝑖=0 

II. EXISTING METHOD 

 

The limitations of these codes also serve to analyse 

and develop Two Bit Overlap (TBO) codes. The first 

part of the paper explains how to get DEC OS-MLD 

codes by looking at the properties of the matrices that 

were used to create them. Subsection 2 introduces the 

process for building the matrices, while Subsection 3 

contains the parameters of the suggested codes.  

 

Feature Matrix 

A technique for constructing DEC One Step Majority 

As mentioned before, in order to create Logic 

Decodable (OS-MLD) codes, it is necessary to build 

column matrices in such a way that:  

 

1. Each row has precisely four columns.2. Each set of 

columns shares no more than one place with any other 

set.  

 

The design described above is shown by Orthogonal 

Latin Squares with double error correction.Because 

every data bit is anticipated to participate in the parity 

checks for which it has one of these in the column, the 

whole matrix might be used to build parity checks. 

This way, each data bit corresponds to a column and 

each row to a parity check bit.  

 

As mentioned before, the Orthogonal Square-Majority 

Logic Decodable property is simple because all bits in 

the input data undergo four parity tests, whereas the 

output bits undergo just one.In a similar vein, an error 

may still occur; however, no errors can occur until two 

parity checks on the initial bit generate two mistakes 

on the other bits.  

 

Later on, the code will be OS-MLD for DEC by taking 

the majority of at least five of the seven equations for 

the participating bit. The following are examples of 

likely scenarios:  

1. The error free bit has a worst-case scenario of four 

parity check failures, which eliminates plurality and 

wrongdoing, thanks to a free error bit and two 

additional bits that are in error. 2. It will be repaired 

since at least five parity check faults on the wrong bit 

are created by two bits that aren't accurate.  

The increased difficulty in encoding and decoding 

compared to a DEC OLS code is one drawback of this 

design. This is because of two things:  

One, more reasoning is needed to assess parity tests 

due to the increased amount of matrices (seven per 

column instead of four) in the matrix.2. The majority 

vote is conducted after seven parity tests, but no more 

than four are allowed, which is much more 

complicated.  

Nevertheless, as discussed in the paper's assessment 

section, decoding remains much easier than for a 

language that is not OS-MLD. To be competitive with 

existing DEC OLS codes, the suggested codes must 

use less parity check bits. Next, we'll demonstrate that 

this holds true for the proposed plan.  

 
Polynomial based Matrix Construction 

Matrices with the properties specified in the previous 

subsection can be formed as follows. We associate each bit 

with index b with a polynomial P of degree two, such that 
b 

 

each of its three coefficients belong to [0,3√𝑘-1], where k is 

the number of data bits in the code word. The coefficients 

Consider a building in which the matrices are given in such a are selected such that𝑃𝑏 (x) =∑2 
 

 

𝑎𝑖 . 𝑥𝑖satisfies 𝑃𝑏 (3√𝑘) = 

way that: 2 
𝑖=0 

 
 

𝑎𝑖. (3√𝑘)𝑖 = 𝑏. Note that there is a single option for the 

1. There are exactly 7 columns each.2. With one in 

particular, each pair of columns has just two 

positions at most. 

selection of a , a , a . For instance, a   equals b mod 
0 1 2 0 

 

3√𝑘, 𝑎1 = ((𝑏 − 𝑎0)/3√𝑘)mode3√𝑘and𝑎2 = ((𝑏 − 𝑎0 − 

 

  

𝑎1. 3√𝑘)/(3√𝑘 )). This is illustrated with the following 

example. Let consider k=73 = 343𝑎𝑛𝑑 𝑏 = 51. 

∑ 
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1 

 

Then the coefficients of the polynomial are𝑎0 = 

51 𝑚𝑜𝑑 7 = 2; 𝑎 = 51−2 𝑚𝑜𝑑 7 = 
7 

0 𝑎𝑛𝑑 𝑎2(51−2−0.7) 𝑚𝑜𝑑 7 = 1 so that 𝑃 (𝑥) = 2 + 𝑥2 

polynomial with degree 2 , has three roots that are not 

possible as per Lagranges theorem. eThis means, therefore 

that Pb is completely quavalent to Pc. consequently, B=c 

72 51 
 

 

which satisfies𝑃51(3√𝑘) = 𝑃51(7) = 2 + 72 = 51. 

 
We then describe every b bit by the seven polynomial values 

such that modulo3√𝑘 calculations are done. In our example, 

such values will be {2, 3, 6, 4, 4, 6, 3} with bb = 51. Each 

one of these values3√𝑘 is represented. Bits in such a way that 

a single bit corresponding to a value is equivalent to one, 

while all the others are zeros. Likewise, the ordered sequence 

of values is described into a binary vector length 

and the two bits are same which eliminates the hypothesis that 

these bits were different. 

The building just mentioned would therefore produce matrices 

with columns which have exactly seven columns and that 

share two at most. Let us summarize the mechanism of 

construction: 

1. Choose a block size k such that 3√𝑘 is a prime more than 

six.2. For every position ofk bits allocate an index b = 0, 1, 

2… k-1.3. Compute the polynomial𝑃𝑏 (𝑥) = 

 
  3√𝑘. ∑2  𝑎 . 𝑥𝑖which  satisfies𝑃 (3√𝑘)=bwith  coefficients  that 

𝑖=0  𝑖 𝑏 

 

That list would be {0010000, 

belong to 
 

[0,3√𝑘 − 1].4. Compute the values of the polynomial 3√𝑘 for 

0001000,0000001,0000100,0000100, 0000001, 0001000} in x ∈ [0,6].5. Assign a 
 

 

3√𝑘bit array to each of the values 

our example. In the parity search matrix, this vector will be 

the column of the data bit b and has exactly seven (satisfying 

the first condition). 3k 37k. 

 
Further, when a prime number is greater than or equal to 

seven, it will be shown that the second condition specified in 

the previous subsection is also met. This condition states that 

two matrix columns must have two columns in general at 

most. The statements are based on Lagranges theorem in 

number theory , which states that a polynomial of degree n>1 

modulo, a prime number p with integer coefficients which are 

not divisible by p, has at most n individual roots. 

 
For the polynomials used in the construction of the code, this 

is the case because the coefficients are modulo that is a prime 

and not divisible by and are calculated over which they are 

also smaller than . Now, assume that two bits b and c in the 

parity check matrix have more than two bits in general. This 

indicates that at least three different values overlap between 

the two polynomials Pb(x), Pc(x), each degree two.Which 

implies that Pb(x)-Pc(x), which is a 
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obtained in 4 such that the bit that corresponds to the value 

is 1 and all the other bits are 0. 6. The column of the parity 

check matrix for that bit is formed by the concatenation of 

the seven arrays obtained in step 5. 

 
For such a specified prime number p, the codes acquired get 

the following parameters: and n-k=7. P. Which compares 

correlates to codes which have OLS & when p is big, n- 

k=4.p. 

 

 

TBO Codes 

 

A summary of the TBO code requirements obtained using the 

polynomial setup is provided. Just a small number of word sizes 

starting at k = 343 are supported, but you can also check the 

specifications of DEC OLS codes with comparable word lengths 

in this table. Reducing the size of the H matrix might make this 

useful for 256-bit word security.By removing the 87 columns that 

take up no more than one spot from each H matrix, we can keep 

the single parity bit.  

corresponding to a DEC OLS code's 64 bits, the suggested code 

necessitates 48 bits for parity checking. For certain cache 

memory configurations, the following block size, k = 1331, is 

suitable for protecting words with a length of 1024 bits. To 

simplify the code and allow 75 parity bits instead of 128 for DEC 

OLS code, we may keep 2 parity bits.  

 

III. PROPOSED METHOD 

 

Communication often involves the acquisition of data in a 

serial fashion, which allows for bit-by-bit decoding. 

Decoding is challenging since it requires finishing the 

procedure for a whole word in a single step. The usage of 

Single Error Correction (SEC) codes has been standard 

practice for memory preservation. It is possible to decode 

each bit in this scenario by comparing the syndrome to its 

matching column in the parity check matrix. 

However when it is necessary to fix more than one bit, such 

 
1. The size of each column. 7. k 2. Every column referring to 

a bit of data has exactly seven columns.3. Every set of 

columns only has two positions as a maximum, with one in 

default (two bit overlap). 

 

 
Construction of the Parity Check Matrix: 

Codes derived from Latin squares are known as orthogonal Latin 

square codes. Latin squares of order m are square arrays of 

dimensions m* m, where each row and column may contain any 

number from the set {0, 1, 2... m-1}, and each element can only 

appear once in each row or column. The equation k= m2 holds 

true for safe data of length k bits unless the OLS code is being 

derived from Latin squares with dimension m. On the other hand, 

the t-error for OLS code modification uses 2tm parity bits. 

 
𝑀1 

1
 

 
an approach called as syndrome decoding, wants to evaluate 

the various bit error syndromes that contain the bit. Which 

leads 

to a 

sig

nifi

cant increase in the 

complexities of 
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𝐻 = I 
I 
L 

𝑀
.  

2 

. 
𝑀3 

𝐼2𝑡𝑚 
I 

I 
  

decoding, particularly for large word sizes. Because syndrome-

based decoding has its limits, One Step Majority Logic 

Decodable (OS-MLD) codes have been created to safeguard 

memory. Orthogonal Latin Square codes and other OS-MLD 

algorithms were proposed for memory security decades ago. But 

there are situations when parity checking requires a lot of bits. 

By using these codes, we can reduce the amount of bits needed 

for parity checks. The fact that DS and EG codes only handle a 

small subset of block sizes and lack error correcting capabilities 

is their biggest drawback. As an example, the only values that EG 

codes can handle for Double Error Correction (DEC) are (n, k), 

where n is the size of the code word and k is the size of the data 

block. 

 

Double error correction Orthogonal Latin Square codes are 

designed to have following characteristics for the parity check 

matrices H: 

In M1, m is the number of 1s in each row, and in M2, Im 

are identity matrices with dimensions m × m. The remaining 

submatrices, denoted as M3, M4,..., M2t, are constructed 

from pairwise orthogonal Latin squares of rank m. 

 

A basic decoding method may be constructed using these 

characteristics. In this technique, the seven parity check 

equations are used to execute a majority vote for each data 

bit. If the output is 1, it means that the bit was incorrect and 

has to be fixed. Commonly, this process is called one-step 

majority logic decoding.  

 

It fixes both single-bit and double-bit faults that impact data 

bits. On the other side, if the bit is accurate, mistakes with 

the other two bits can only impact two of its parity checks, 

meaning there won't be enough of a majority to initiate a 

repair.  

 

 

The data bits are located in the left n2 * n2 columns of the 

parity check matrix H for the Double Error Correction 

Orthogonal Latin Square coding, as shown in Figure 1. 

Compared to testing every potential two-bit error pattern for 

a bit, the necessary logic circuit is simpler. Since the number 

of double-bit error patterns is directly proportional to n, this 

characteristic becomes more favourable as the code word 

size increases.  

 
 
 

Figure 1: Parity check matrix H of the (n, 1, k) DEC OLS 

code. 

Since the equations for calculating the code words can 

be directly acquired from each row, the design of the 

encoder for an OLS code is fairly straightforward. To 

create the parity bits, bits from each row are sent into 

XOR gates. Parity check matrices for Orthogonal Latin 

Square codes use the same number of rows as their 

number of bits. In the picture, we can see the decoder 

of an OLS code of size 1* n2 doing one-step majority 
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logic decoding.  

 

 

Because n is a prime number in this arrangement, we 

settled on 7.The decoding bits are 1*49, and the check 

matrix is a 49*49 identity matrix. The process of 

getting a code word's bits involves recalculating the 

bit and all of the parity check equations in which it is 

involved, followed by a majority vote among these 

equations. If a mistake has happened, the value of the 

syndrome bit or the parity check equation will be 1, 

otherwise it will be 0. 

 

 

It is clear that an error has changed the bit's state and 

the bit has to be fixed if most of the syndrome bits 

become 1. With the right amount of inputs, modulo-2 

adders or XOR gates may recalculate the parity check 

bits. One way to fix the problem at the end of the 

majority logic circuit is to use a 2-input XOR gate. 

This gate takes the bit as one input and uses the output 

of the majority logic circuit as the second input.  

 

RESULTS AND 

DISCUSSION 

 
To correct multi-bit errors orthogonal Latin square codes 

are highly efficient. Based on this work, the encoder and 

decoder of OLS codes can be implemented for larger data 

blocks. By comparing with the existing method, in 

proposed method the area as well as delay will be reduced. 

 

 

RTL Schematic 
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CONCLUSION 

 
 

When compared to other multi-bit error correcting 

codes, orthogonal Latin square codes are much more 

efficient, take up far less space, and need far simpler 

circuitry for both the encoders and the decoders. This 

study lays the groundwork for using OLS codes, 

which have a highly flexible and modular encoder 

and decoder, to handle bigger data blocks and a range 

of data lengths. Confirmation of the encoder and 

decoder's low complexity and latency was provided 

by the implementation findings for an FPGA 

platform. 
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